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ABSTRACT

An important aspect subtending language understanding and production is the ability to independently
encode positional and symbolic information of the words within a sentence. In Transformers,
positional information is typically encoded using Positional Encodings (PEs). One such popular
PE, namely Rotary PE (RoPE), has been widely used due to its empirical success. Recently, it has
been argued that part of RoPE’s success emerges from its ability to encode robust positional and
semantic information using large and small frequencies, respectively. In this work, we perform a
deeper dive into the positional versus symbolic dichotomy of attention heads behavior, both at the
theoretical and empirical level. We provide general definitions of what it means for a head to behave
positionally or symbolically, prove that these are two mutually exclusive behaviors and develop a
metric to quantify them. We apply our framework to analyze Transformer-based LLMs using RoPE
and find that all heads exhibit a strong correspondence between behavior and frequency use. Finally,
we introduce canonical tasks designed to be either purely positional or symbolic, and demonstrate
that the Transformer performance causally relates to the ability of attention heads to leverage the
appropriate frequencies. In particular, we show that we can control the Transformer performance
by controlling which frequencies the attention heads can access. Altogether, our work provides a
detailed understanding of RoPE, and how its properties relate to model behavior.

Keywords Positional encodings · Transformers · Interpretability

1 Introduction

“[...]Man is not truly one, but truly two.”

— Robert Louis Stevenson, The Strange Case of Dr. Jekyll and Mr. Hyde.

Positional Encodings (PEs) play a critical role in how modern Transformer-based Large Language Models (LLMs)
function. Such criticality is, for example, illustrated by the fact that encoder-only Transformers with No Positional
Encoding (NoPE) are invariant under permutations of prompt’s tokens [Pérez et al., 2021], severely limiting their
expressivity. While decoder-only Transformers using NoPE can in theory recover positional information [Kazemnejad



et al., 2023], they are unable to learn some matrices observed in practice [Barbero et al., 2024]. Regardless, at
the practical scale, adding a component to explicitly inject positional information is the current standard choice in
state-of-the-art Transformer-based LLMs.

Rotary PE (RoPE) has increasingly become one of the most popular choices to inject positional information. These PEs
are given by a sequence θ1, . . . , θd/2 of d/2 angles (where the embedding dimension d is assumed to be even), each
of which acts as a corresponding rotation on a different rotational plane. By rotating query and key vector pairs, they
account for the relative positional distance between them, thereby incorporating the positional information into the
computed representations. Conventionally, RoPE is believed to be helpful because it facilitates token dependency decay
with increasing distance. Yet, more recent evidence suggests that RoPE’s utility lies in its ability to leverage different
frequency bands for different purposes. In Barbero et al. [2024] for instance, the authors show that while certain models
largely prefer to use low frequencies (which they conjecture to implement “information channels”), they also find that
specific particular heads use high frequencies to produce “robust positional attention patterns” that also play a key role
in the overall workings of the model.

Moreover, the choice of the base in RoPE (which determines the total frequency range) has also been shown to play
an important role when extrapolating models to longer contexts. On the one hand, there is evidence that improved
performance in long-context fine-tuning can be achieved by decreasing the base (i.e., increasing the frequencies) in
RoPE [Liu et al., 2023], a phenomenon often attributed to the fact that higher frequencies bias the Transformer towards
attending more to closer tokens. On the other hand, decreasing the base negatively affects the ability to accurately
retrieve information in such long contexts [Men et al., 2024]. Indeed, information retrieval (in long contexts) requires
attending to similar tokens even when their relative distance is large, an ability suggested to be improved by selecting
larger (rather than smaller) bases [Men et al., 2024], thereby shifting the range towards lower frequencies.

At a conceptual level, all these works seem to point towards the fact that different frequency bands in RoPE are used by
attention heads to implement two opposite core abilities: one more concerned with positional information and one with
symbolic information, creating a tension between the two. Achieving a deeper understanding of this tension is a crucial
step towards improving the mechanisms of Transformers by optimally striking the positional-symbolic balance in a
given task context.

In particular, the following questions remain open:

• What are the mathematical properties that underlie these two core abilities?
• How can we measure if an attention head’s behavior is exhibiting either of these abilities?
• How do these abilities relate to the use of the different frequencies in RoPE?
• How is model performance affected by the choice of these frequencies?

Contributions. In this work, we perform a detailed theoretical and empirical1 study of all these questions. Due to
space constrains, we defer our further related work discussion to Appendix 1.1. We rely on the GEMMA-2, QWEN-2,
and LLAMA-3 families of large language models for our empirical analysis. In summary:

1. We provide formal definitions of what it means for an arbitrary attention head to behave purely positionally or
purely symbolically on a given input. We prove that these behaviors are mutually exclusive, unless the attention
pattern follows a uniform distribution. Moreover, we prove that certain intrinsically positional operations
cannot be implemented by heads that behave symbolically, whereas certain symbolic operations cannot be
implemented by heads that behave positionally.

2. We introduce a novel metric intended to provide scores that reflect the extent to which a given head behaves
positionally or symbolically on a given input. Our metric can be flexibly applied to analyze a given model at
different levels of granularity, from specific heads on specific inputs and at specific frequencies in the case of
RoPE-based attention, to a single pair of scores per head, enabling the characterization and visualization of the
positional-symbolic profile of the model.

3. We apply our metric to inspect the behavior of attention heads in Transformer-based LLMs using RoPE,
specifically the GEMMA-2, QWEN-2, and LLAMA-3 families. By analyzing these scores along the different
frequency ranges, we reveal a surprisingly sharp connection between frequencies and attention head behavior:
lower frequencies are preferred by symbolic heads, while moderately larger frequencies tend to correspond to
positional heads. On the other hand, larger frequencies are used by heads achieving high values in both scores,
a phenomenon that forces an approximately uniform distribution of attention weights.

1Code for our experiments can be found at positional-and-symbolic-iclr2026-5B3E.
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4. We then study attention heads in order to understand how frequency choices affect their performance in
canonical tasks designed to intrinsically be either positional or symbolic. We find that a head can act positionally
(and thus perform well on the respective task) only when given access to relatively large frequencies, while
forcing it to work with lower frequencies inevitably leads to poor performance. We show that in this case,
a U -shaped accuracy pattern tends to emerge. Similarly, attention heads can perform well on intrinsically
symbolic tasks if given access to low frequencies. Interestingly, forcing it to rely on higher frequencies also
harms performance, but this time leading to an inverted U -shaped accuracy pattern. Our observations are
supported by both theoretical and empirical results.

1.1 Related Work

Given the success of RoPE, several studies have dived into its mechanisms to provide: (i) better long-context perfor-
mance, and (ii) a deeper knowledge of how the RoPE’s mechanisms relate to the type of information encoded in the
Transformer.

Extending context windows. Much work has been done to modify or extend the mechanisms of RoPE in order
to extend the context window length of LLMs. It has been shown down-scaling position indices on RoPE, within
the pre-trained context-length limit and alongside small amounts of fine-tuning, avoids catastrophic attention scores
blow-ups seen in naive extrapolation, thereby promoting extrapolation in unseen ranges [Chen et al., 2023]. In the same
vein, Peng et al. [2023] propose YaRN, a method that combines Neural-Tangent-Kernel aware position interpolation
with attention scaling to improve long context window performance. Other researchers have found that increasing the
RoPE base frequency improves long-context information retrieval [Xiong et al., 2023]. More recently, LongRoPE
proposes the addition of non-uniform position interpolation with a fine-tuning curriculum strategy as shown to further
increase the ability of long-context performance (up to 2,048k tokens) [Ding et al., 2024]. Finally, by analyzing attention
scores in the Needle In A Haystack 2 benchmark, Yang et al. [2025] observed that NoPE was related to higher attention
mass over the needle (compared to RoPE), leading them to propose RNoPE, i.e., alternating NoPE and RoPE layers.
RNoPE resulted in better performance, particularly within question-answering contexts .

Mechanisms of RoPE and their relation to information encoding. Despite its importance to improve model
performance, much less work has focused on generating a deeper theoretical knowledge of the mechanisms subtending
RoPE, and how these relate to the behavior of attention heads, and in turn to model performance. Chen and Yan [2024]
observed that the 2d pair rotation direction highly depends on Query/Key pair weight angle. These authors observe
empirically, and theoretically demonstrate, that non-orthogonal weight vector pairs are more sensitive to positional
information, while orthogonal ones focus rather on semantics. Their theoretical advances was then used to devise an
efficient fine-tuning method (Angle-based Weight Masking) that primarily focuses on updated semantics-related weights.
Closest to our work is that of Barbero et al. [2024]. In their work, they theoretically prove (and empirically observe
in Gemma 7B) that RoPE can learn specific positional (diagonal and off-diagonal) attention head patterns, which is
not the case for NoPE. Furthermore, they relate the ability to learn these position attention patterns as leveraging high
frequencies in RoPE. Conversely, semantic attention patterns are attributed to leveraging low frequencies. Furthermore,
they suggest to truncate low-level frequencies to avoid arbitrary (irrational) rotation values in long contexts, and observe
better performance when doing so (when keeping 75% of the highest RoPE frequencies).

Our work extends current knowledge by: (i) mathematically defining positional or symbolic attention head behavior, (ii)
offering a novel metric to quantify these behaviors at different levels of granularity (from heads to full model), (iii)
theoretically proving that position and symbolic attention heads are mutually exclusive, (iv) theoretically proving that
some positional tasks cannot be performed by symbolic heads, and vice-versa, and (v), empirically demonstrating that
we can causally control the accuracy pattern in by gating access to specific frequencies.

Moreover, as described in the main text, we use a toy 1-head decoder-only transformer to gain a deeper understanding
of the RoPE properties. Such a model allows us to have a strong hold on the interpretation of the RoPE mechanism,
otherwise lost when working with deeper and wider models. Other works following this approach have demonstrated
important features of Transformers. For instance, such toy models have been used to characterize transformer loss
landscapes [Makkuva et al., 2024, 2025]. Furthermore, 1-layer transformers have also been used to evaluate their
expressivity Li et al. [2024a], Quirke and Barez [2023], Sanford et al. [2023, 2024], Kozachinskiy et al. [2025].
Moreover, these models have been used to understand the learning dynamics and properties in transformers [Tian et al.,
2023, Li et al., 2024b, Huang et al., 2024, Yang et al., 2024, Chen et al., 2024].

2https://github.com/gkamradt/LLMTest_NeedleInAHaystack
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2 Preliminaries

Definition 1 (Attention Head). A d-dimensional decoder-only attention head is a function H : (Rd)∗ → (Rd)∗ given
by a continuous “Logits function” L : (Rd × N)2 → R, a continuous “Value function” VAL : Rd → Rd, and a
continuous “activation function” F : Rd × Rd → Rd. Given an input sequence of vectors x̄ = (x1, . . . , xn) ∈ (Rd)n,
the head H outputs a sequence of vectors ȳ = (y1, . . . , yn) = H(x̄), computed as follows. First, the “attention weights”
are computed as wi

j = exp(λi
j)/

∑
k≤i exp(λ

i
k), with λi

j = L(xi, i, xj , j); then, a sequence ā = (a1, . . . , an) of

“attention vectors”: ai =
∑i

j=1 w
i
j · VAL(xj); and finally, one sets: yi = F (ai, xi), i = 1, . . . , n.

Transformer architecture. A (decoder-only) transformer MEMB for the vocabulary Σ is composed of an embedding
function EMB : Σ → Rd where d is the embedding dimension, a finite sequence of d-dimensional Attention Heads
H1, ...,Hℓ, and a function r : Rd → R|Σ|. Given a sequence s = (σ1, ..., σn) in the vocabulary Σ, the transformer M
returns a probability distribution on Σ as follows: Define xi = EMB(σi). Then, apply Hℓ ◦ ... ◦H1 to (x1, ..., xn) to
obtain (u1, ..., un). Subsequently, define v = r(un) ∈ R|Σ| and finally the desired probability distribution is given by
µ = softmax(v). When µ is maximized at a unique symbol σ ∈ Σ for an input s, we set MEMB(s) = σ.

About the Logits function. Of particular interest for us are the Logits functions of following form:

L(xi, i, xj , j) = ⟨U jKxj , U
iQxi⟩, i, j = 1, . . . , n j ≤ i, (1)

where Q and K are the (learnable) “query" and “key" matrices and U : Rd → Rd is a unitary linear operator whose
role is to incorporate the relative positional information between xi and xj given by positional inputs i > 0 and j > 0.
We note that both NoPE and RoPE are special cases.

3 Positional versus Symbolic attention

As done in previous transformer explainability [Ali et al., 2025, Sakarvadia et al., 2023, Ferrando et al., 2023, Ameisen
et al., 2025] and RoPE analysis work [Barbero et al., 2024], and for the sake of simplicity, we choose to base our
theoretical analyses directly on the Logits function, while attention weights are used for empirical observations. All
proofs are deferred to the Appendix.

3.1 Definitions

In this section, we provide formal definitions of what it means for a head to behave positionally or symbolically on a
given input. In the following, Si will denote the set of permutations of [i].
Definition 2 (Positional and Symbolic attention). We say that a head H acts positionally on an input x =
(x1, x2, ..., xn) at query i ≤ n if its logit sequence is invariant under permutation of the key vectors. That is, if
for all π ∈ Si−1:

L(xi, i, xπ(j), j) = L(xi, i, xj , j) ∀j < i.

On the other hand, we will say that H acts symbolically on x = (x1, x2, ..., xn) ∈ (Rd)n at query i ≤ n if its logit
sequence is equivariant under permutations of the key vectors. That is, if

L(xi, i, xj , π(j)) = L(xi, i, xj , j) ∀π ∈ Si−1, ∀j < i.

In other words, suppose we are querying on a given input from position i to all positions j ≤ i. A head H is positional
when L(xi, i, xj , j) depends only on the position j, and not on the value of the key vector xj . In contrast, H will be
symbolic when L(xi, i, xj , j) only depends on the key-vector xj (the “symbol”), regardless of the position j. See
Figure 4 for an illustration (Appendix A.1).

Let us mention a few important examples. First, it is easy to see that a NoPE head acts symbolically on every input (the
logits function does not depend on j in this case). Second, if an input x̄ is such that the key vectors Kxj are all the
same for j = 1 . . . i− 1, say equal to some vector v, then any head with Logits as in equation 1 will act positionally on
it, simply because L(xi, i, xj , j) = ⟨v, U i−jQxi⟩, which only depends on j. Note that for such an input, a NoPE head
will act both positionally and symbolically. In this case, the logits L(xi, i, xj , j) will have the same value for all xj

with j < i, yielding a uniform attention pattern.
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3.2 The positional-symbolic exclusion principle

Let L be a logit function and x̄ = (x1, ..., xn) an input. Here, we assume we are querying from i = n. For a permutation
π ∈ Sn−1 and j ∈ [n− 1], define

δposL,x̄(π, j) = L(xn, n, xπ(j), j)− L(xn, n, xj , j),

δsymL,x̄ (π, j) = L(xn, n, xj , π(j))− L(xn, n, xj , j).

We view δposL,x̄ and δsymL,x̄ as real ((n − 1)! · (n − 1))-dimensional vectors with coordinates, indexed by elements of
Sn−1 × [n− 1]. By definition, a head acts positionally (respectively, symbolically) at i = n on the input x̄ if and only
if δposL,x̄ = 0 (respectively, δsymb

L,x̄ = 0). One could imagine that some attention heads in real-life transformers, although
not being exactly positional or symbolic, have one of the vectors δposL,x̄ or δsymL,x̄ really close to 0, thus exhibiting “almost”
positional or symbolic behavior. Based on this idea, in the next section we define positional and symbolic scores.

We now use these norms in a result that intuitively states the following: If the head’s behavior on x̄ is close to both
positional and symbolic, then the attention weights form an approximately constant sequence. This is an instance of
the positional-symbolic duality: only at the cost of a uniform non-focused attention, we can have both positional and
symbolic behavior.
Theorem 1 (The positional-symbolic exclusion principle). Let H be an arbitrary attention head with the logit function
L. Let x̄ = (x1, ..., xn) be an input and let λ = (λ1, ..., λn−1) be the sequence of logits on this input, excluding
L(xn, n, xn, n); namely, λj = L(xn, n, xj , j). Then, denoting by µ the average value of λj’s, we have

Var(λ) =
1

n− 1

∑
j

(λj − µ)2 ≤
∥δposL,x̄∥22 + ∥δsymL,x̄ ∥22
(n− 1)! · (n− 1)

3.3 Positional and Symbolic Scores and their application to realistic models

In this section, we introduce scores to measure the extent to which each head in a model behaves positionally or
symbolically, and apply them to inspect the google/gemma-2-2b-it model (similar analyses on four other models
are presented in the Appendix A.5). Our evaluation is grounded in the binding task, which tests whether the model can
correctly associate entities with their attributes [Feng and Steinhardt, 2023]. Specifically, we construct inputs consisting
of n = 256 entity–attribute pairs, where entities are proper names and attributes are colors (e.g., Alice likes the color
Red; Bob likes the color Blue). At the end of the sequence, a query probes the attribute of one entity (e.g., What color
does Alice like the most?). We choose this task for two reasons. First, it can intuitively be approached by a combination
of positional and symbolic mechanisms. Second, we have control over the location at which a given entity-attribute pair
appears in the prompt. This allows for a clearer comparison of the model behavior’s when the pair location ranges from
the beginning to the end of the prompt.

From Logits to Attention weights. Given an arbitrary head H with logits function L and an input x̄, we define
the logits produced when querying the final token xn as L(x) =

(
L(xn, n, xj , j) : j ≤ n

)
. Then, we define the

corresponding attention weights as D(x) = softmax(L(x)).

5
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Figure 1: Global and local analysis of attention head behavior. A. Each head in the positional–symbolic plane.
B. Heatmaps of positional and symbolic scores for each head across all layers. C. For the same heads, we plot their
positional and symbolic scores as a function of RoPE frequencies. By convention, lower frequency IDs correspond to
higher angular frequencies, and conversely, higher frequency IDs correspond to lower angular frequencies. D. norms
of the logits at each frequency for head (12:0). E. Attention weight patterns as a function of permutations. Top rows
(green traces): Behavior of a symbolic head whose attention weight mass follows the permutations. Middle rows (red
traces): Behavior of a positional head whose attention weight mass is invariant to the permutations. Bottom rows
(blue traces): Behavior of a (mix) attention head with both high symbolic and positional scores, displaying a uniform
mass with low attention weight scores. Note that symbolic, positional, and mix head behavior ar associated with low,
relatively large, and the largest frequencies, respectively. F. Location on the positional-symbolic plane of head (12:0) as
a function of the selected frequency.

Computation of Positional and Symbolic Scores. We partition the sequence x into contiguous m blocks and
compute the sequence d = (d1, ..., dm), where di is the average attention weight of D(x) over the block i. To analyze
how attention behaves under input permutations, we focus on simple block swaps (e.g., exchanging block i with
block j). For each such permutation, we represent the corresponding block averages before and after the swap into
two-dimensional vectors vij = (di, dj) (before the swap) and v′ij = (d′i, d

′
j) (after the swap, but on the same block

locations). Using cosine similarity on the two-dimensional vectors v and v′, we define two scores: the positional score
sPOS(x̄), which measures the stability of block averages under permutations (i.e, we compare each v′ij against vij), and
the symbolic score sSYM(x̄), which measures whether block averages move consistently with the permutation (i.e. we
compare each v′ij against vji). The full details of how the metric is computed can be found in Appendix A.3.
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Visualizing heads in the Positional-Symbolic Plane. The pair of scores PS(H, x̄) := (sPOS(x̄), sSYM(x̄)) defines a
point in what we call the positional-symbolic plane. In order to visualize the behavior of an entire model on a given task,
we can fix a prompt σ̄ = (σ1, . . . , σn) and compute the scores for all heads in the model based on their corresponding
inputs x̄ = (yℓ−1

1 , . . . , yℓ−1
n ), with ℓ defining the layer number. This allows us to reveal the behavior of the entire model

and visualize its behavior’s profile in the positional-symbolic plane.

Figure 1 shows this profile for the entire gemma-2-2b-it model on the binding task. Each dot on Figure 1A represents
the location of an attention head on the positional-symbolic plane (with color coding layer depth). We observe that
early layer heads are associated to high positional scores, whereas late layer heads tend to be more symbolic. Figure
1B, illustrates an important feature of our work. Compared to previous studies [Barbero et al., 2024], we now can
depict a full model attention head behavior snapshot, for all heads and layers. This snapshot provides a strong empirical
support for our theoretical positional-symbolic exclusion principle. Indeed, the scores in both heatmaps are negatively
correlated. Furthermore, Figure 7 shows the predominance of symbolic head behavior when querying block 1, and how
the positional and symbolic scores gradually revert when the queried blocks gradually move from block 1 to 256.

Positional and Symbolic Scores in RoPE. We now take a closer look into how attention heads use the different
RoPE frequencies. We do this by first decomposing a given head H into m distinct projection heads, each of which can
be seen as an individual 2-dimensional head with a single associated frequency (see Appendix A.3 for details of logits
per frequency). By computing the positional and symbolic scores for each projected head, we can visualize how the
behavior of the combined head H depends on each of the frequencies in RoPE. As can be seen in Figure 1C, there is a
sharp correspondence between attention head behavior type (i.e., symbolic or positional) and frequency, with relatively
high frequencies associated to positional behavior and lower frequencies to symbolic behavior, mirroring the results
observed in some specific heads by Barbero et al. [2024], but now generalized to all heads and layers (see Figure 5).
Our method allows to reveal a new empirical observation. We find that for the highest frequencies, some heads display
large positional and symbolic scores. According to Theorem 1, these should correspond to heads exhibiting a uniform
attention pattern.

We then took an even deeper look at the first head from layer 12 (head 12:0; see top right of Figure 1C). Figure 1E
depicts the behavior of this head for three different frequencies exhibiting symbolic (green traces), positional (red
traces) and both (blue traces) behaviors, respectively. As expected from our definitions, symbolic behavior is reflected
by changes in the attention weight mass that moves with the permutation, whereas the attention weight profile remains
unchanged for the positional behavior. One can also clearly see a uniform attention pattern for the frequencies where the
head displays both behaviors. Finally, head (12:0) also allows us to understand the underlying reasons for the location
of heads on the positional-symbolic plane, as this head exhibits both high symbolic and positional scores (see red star
on Figure 1A ). For this head, we analyzed the norms of the key vectors at each frequency (Figure 1D), and noted that
most of the norm mass is concentrated on the smallest frequencies, which therefore contribute more to the global head’s
behavior, and explains a relative high symbolic score. Additionally, some mass is distributed over a large range of
intermediate frequencies, in turn explaining a relatively high positional score.

4 Positional and symbolic canonical tasks

In this section3, we aim at deepening our theoretical understanding of positional and symbolic heads. In particular,
we introduce non-trivial tasks that can be solved by pure positional (symbolic) heads using a 1–layer attention-only
transformer. Our goal is to show how simple models can give us important clues with respect to the fundamental tension
between tasks requiring the extraction of either positional or symbolic information from the input.

Index Task. We now introduce a task intended to be intrinsically positional. Consider an input sequence sPOS =
(σ0, σ1, . . . , σn−1, j), where each σi is a symbol from a finite vocabulary Σ, and j is an integer index in the range
0 ≤ j < n. The goal of the task is to output the symbol at position j (determined by the last token in sPOS), σj . Thus, to
solve this task, one needs a transformer that computes the function fPOS defined by fPOS((σ0, σ1, . . . , σn−1, j)) = σj .
Intuitively, any mechanism allowing to solve this task should be highly sensitive to the position being asked for, while
it can ignore the actual symbols. We now proceed to prove that fPOS can never be solved by a 1-layer decoder-only
transformer MEMB with a single head H that acts symbolically.
Theorem 2. For an arbitrary attention head H , if H acts symbolically on a non constant input x̄ then MEMB ̸= fPOS.

Note that Theorem 2 does not assume any specific form in which the positional information is incorporated into the
logit function. On the other hand, our next result shows that fPOS can be solved by a simple and purely positional
attention head.

3All proofs for this section can be found in Appendix B.
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Theorem 3. For each n > 0 there is a purely positional attention head HPOS that uses RoPE with a single angle and
no value or activation function, such that MEMB = fPOS for every sPOS of length n.

Even though solving fPOS seems rather simple, Theorems 2 and 3 characterize it as a purely positional task. Interestingly,
not every angle of RoPE is appropriate for the construction of HPOS. In fact, if the angle is greater than 2π/n, attention
weights are not maximized in just one position of the input, which could lead to confusion on the model’s output. Later
we will see how this effect emerges also empirically, having a direct impact on a model’s capacity for solving tasks like
fPOS.

Information retrieval Task. Here, we consider inputs of the form sSYM = (σ1#i1, σ2#i2, . . . , σn−1#in−1, σj#)
where ik is an integer for every k < n. The goal for this task is to retrieve the correct symbol σj#ij , associated to
the last symbol σj (the query). We assume for this task that σj appears just once in the sequence before the query.
Formally, the solution function fSYM is defined as fSYM((σ0#i0, σ1#i1, . . . , σn−1#in−1, σj#)) = σj#ij . Clearly,
this task only depends on the symbols and positional information is irrelevant to the answer. Similar to the previous
task, we can show that any simple head that acts positionally can not compute fSYM. Here, by H being simple we mean
that VAL is the identity, the activation function F is just a projection, and that EMB = ONEHOT.
Theorem 4. Let H be any simple attention head. If H acts positionally on an input x̄, then MONEHOT ̸= fSYM.

We remark that if we allow F to be a general MLP, then one can use it to override the attention mechanism and produce
a (rather artificial) counterexample (see Appendix section B.6). We proceed by showing that a purely symbolic attention
head H can naturally solve fSYM.
Theorem 5. For every n > 0 there exists a purely symbolic attention head HSYM, without value or activation function,
such that MONEHOT = fSYM on every sSYM of size n.

Experiments on positional versus symbolic heads. Our results show that a simple 1-head transformer can perfectly
solve fPOS and fSYM. Namely, the 1-RoPE HPOS for fPOS and the NoPE HSYM for fSYM. In order to test if such heads
can be learned during training and at the same time explore how the choice of the angle θ affects accuracy, we trained a
simple 1-RoPE architecture for different values of θ on both tasks. While we observe that a 1-RoPE converges to a
proper solution for the appropriate angles (Figure 2A), we also find that the chosen RoPE angle has a direct impact
on the learning abilities of the model. Indeed, as expected from our theoretical results, small frequencies (large ID)
are not suitable for solving the Index (positional) task, while larger ones are inadequate for the Information Retrieval
(symbolic) one. Note the striking resemblance of these accuracy curves with the positional and symbolic scores curves
from Figure 1C.
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Figure 2: Performance on the canonical tasks across training iterations and epochs. A. Tension between Index
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Partial induction Task. Finally, we present a partial induction task4 with inputs of the form sMIX =
(σ1#i1, σ2#i2, . . . , σn−1#in−1, σj#) where ik is an integer for every k < n. We assume for this task that σj

appears at least two times in the sequence, in positions j1 and j2, and that integers ij1 and ij2 are different. The goal
for this task is to retrieve the correct symbol-integer pair associated with the last occurrence of σj (notice that the
case with a single occurrence subsumes the information retrieval task). We denote by fMIX the corresponding solution
function. The following result (which follows directly from our previous results) show that if a 1-layer transformer
computes fMIX, then it cannot behave in a purely positional or purely symbolical way.
Corollary 1. If a simple model MONEHOT with head H computes fMIX, then for every input sMIX, H does not behave
positionally (or symbolically) on sMIX.

On the positive side, we demonstrate that a single attention head with two RoPE angles suffices.

Theorem 6. For every n > 0 there exists an attention head H0,θ2
MIX with two RoPE angles such that MONEHOT = fMIX on

every sMIX of length n.

Experiments for the partial induction task. Figure 2B, shows that a toy model with 1-RoPE angle can not solve the
partial induction task. On the other hand, a model with angles θ1 = 0 and θ2 (flexible), can solve it when θ2 is not too
big. This is expected from the proof of Theorem 6 since bigger angles for θ2 confuse the model’s output. Finally, the
fact that the 1-RoPE version of this model has a decreasing accuracy as angles get bigger suggests that our version of the
partial induction task has a more prominent symbolical difficulty. This could be explained by the fact that solving fMIX

requires to detect only two positions of the input (both occurrences of σj), but several symbols need to be distinguished
at the same time.

5 On the relation between frequencies and accuracy shape
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blue) and key (in orange) vectors trajectories during training for the Index Task. C. Query/Key vector projections on a
rotational plane from a gemma-2-2b-it’s Head for some Binding Task’s input (64 pairs).

As we have seen, a head required to behave in a certain way needs to access certain frequencies. In this section, we
are interested in understanding how the performance of a head that is forced to operate with the wrong frequency is
affected. We thus analyzed the accuracy of our trained 1-layer Transformer on both of our canonical tasks, focusing
on how it depends on the location of the answer within the prompt. Interestingly, as it can clearly be seen in Figure
3A (upper graphs), the loss in accuracy when using frequencies that are too low for solving the Index task (red) is
more severe when the answer lies at the middle of the prompt, and less severe when they closer to the border positions,
resulting in a U -shaped accuracy pattern. This is reminiscent of a phenomenon that has been reported before as “lost in
the middle" [Liu et al., 2024]. On the other hand, when solving the Retrieving task (green) using frequencies that are
not low enough, the opposite phenomenon is observed, and an inverted U -shaped accuracy pattern emerges.

Figure 3B shows the trajectories of the query (blue) and key (orange) vectors during training. These trajectories reveal
the emerging mechanism the trained model relies on to solve the task. The query vectors are configured so that their
angles code the different positions they are querying to, while the key vectors arrange into a single direction, which
explains why the head behaves positionally. In fact, this is the exact same mechanism the theoretical solution HPOS

implements. On the other hand, Figure 3C shows the projections of the query (blue) and key (orange) vectors on a

4Named as such in allusion to induction heads operations [Olsson et al., 2022].
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selected rotational plane for a frequency where head 12:0 from gemma-2-2b-it behaves positionally. One can see the
striking resemblance to the toy model.

By further studying the mechanisms implemented by our theoretical toy models, we are able to provide an explanation
for the observed accuracy shapes, at least at the attention level pattern. Let us say that a function f : [n] → R is
u-shaped if it has local maxima at 0 and n and over this interval it is first decreasing and then increasing. Similarly, we
say it is inverted-u-shaped if −f is u-shaped. Now, for either of our canonical tasks (index and information retrieval)
let j be the location of the answer within the input prompt, and let wmax(j) be the largest attention weight value of the
heads HPOS and HSYM from the proofs of Theorem 3 and 5, respectively. For the next Theorem, we consider a modified
version Hθ

SYM of HSYM where we allow for the use of an angle θ. From the construction of these heads it follows that
wmax(j) is precisely the weight at position j, which is moreover equal for every such input. Besides our empirical
findings, in the Appendix we give a rigorous mathematical proof of the following:
Theorem 7. The function wmax is u-shaped for HPOS and inverted-u-shaped for a simplified version of Hθ

SYM.

6 Conclusions and future directions

We have carried a thorough analysis of two core abilities that attention heads in Transformers require in order to work
effectively. By providing a precise definition of positional and symbolic behavior, we came up with a metric to detect
a working head’s positional or symbolic nature. We were able to disentangle these mechanisms and mathematically
understand why these two abilities are in tension with each other. By analyzing both real and toy models, we explained
why heads prefer different frequencies in RoPE depending on the mechanisms they need to implement to process a
given input, and finally related the resulting accuracy of a model to its ability to employ the appropriate frequencies.

We believe the characterization of a model by its positional-symbolic profile is a powerful tool to analyze how particular
models behave on different tasks. Even though in this paper we have concentrated on the Binding Task [Feng and
Steinhardt, 2023], we foresee a promising strategy in systematically performing similar analyses for a wider set of
tasks and models. For example, one could use this tool to characterize the nature of models and tasks in terms of the
“amount" of positional or symbolic mechanisms they tend to implement (for models) or rely on (for tasks).

In fact, the invariant properties that underlie positional or symbolic behavior can be thought of as inductive biases that
the model has to learn to solve the task at hand. In other architectures such as CNNs or GNNs for example, these type of
inductive biases are imposed into the architecture by design, thereby improving generalization properties and learning
efficiency (Maron et al. [2019], Petrache and Trivedi [2023], Deng et al. [2022]). It is interesting to wonder whether
a similar strategy could be applied to Transformers, for instance by imposing the appropriate degree of positional
or symbolic behavior to selected heads. It is tempting to conjecture that these two core abilities constitute in fact
the fundamental building blocks of any head, in the sense that their action can always be somehow decomposed into
simpler heads behaving purely either positionally or symbolically. Such a theory could constitute the base for designing
architectures targeted to specific tasks. We see this as an exciting avenue for future work.
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A Additional illustration and proofs of section 3

A.1 Illustration of attention head behavior definition

j k

x1 x2 xj … xk xi… … … …

1 2 j k i
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Logit Values

x1 x2 … xi… … … …

1 2 i

L(xi,i,xk,j) L(xi,i,xj,k)

Invariant Logit Values

x1 x2 xk … xj xi… … … …

1 2 j k i

L(xi,i,xk,j) L(xi,i,xj,k)
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xj ↔ xk xj ↔ xk

+
0
-

Figure 4: Illustration using the same sequence as in Definition 2. Left: Original logit values. Middle: Example of
invariant logit values after a simple permutation (swapping xj with xk). Right: Example of equivariant logit values
under the same permutation.

A.2 Proof of theorem 1

Denote ak,j = L(xn, n, xk, j). Take an index j ∈ [n− 1] and a permutation π ∈ Sn−1 independently and uniformly at
random. Note that (j, π(j)) is a uniformly random pair from [n− 1]2 (under any fixation of j, the distribution of π(j)
is uniform). Observe that:

Var(λ) = Var(ajj),

∥δposL,x̄∥22
(n− 1)! · (n− 1)

= E(aπ(j)j − ajj)
2,

∥δsymL,x̄ ∥22
(n− 1)! · (n− 1)

= E(ajπ(j) − ajj)
2.

Since (j, π(j)) is a uniformly random pair from [n− 1]2, the pair (π(j), j) has the same distribution, meaning that:

∥δsymL,x̄ ∥22
(n− 1)! · (n− 1)

= E(aπ(j)j − aπ(j)π(j))
2.

Using the fact that Var(X) = E(X − Y )2/2 for any random variable X and its independent copy Y , we get:

Var(λ) = Var(ajj) = E(ajj − aπ(j)π(j))
2/2.

Finally, using an inequality (x− y)2 ≤ 2x2 + 2y2 for x, y ∈ R, we derive the statement of the theorem

Var(λ) = E(ajj − aπ(j)π(j))
2/2 ≤ E(ajj − aπ(j)j)

2 + E(aπ(j)j − aπ(j)π(j))
2

=
∥δposL,x̄∥22 + ∥δsymL,x̄ ∥22
(n− 1)! · (n− 1)

A.3 General metric to test positional or symbolic heads

Blocks. We define a fixed partition of the index set [n] into m contiguous intervals (blocks)

I1 = [a1, b1], I2 = [a2, b2], . . . , Im = [am, bm], a1 = 1, bm = n,

with ak+1 = bk + 1. For block Ik define its average attention weights under x by

dk(x) =
1

|Ik|
∑
t∈Ik

D(x)t.

We collect these into the block-average vector d(x) = (d1(x), . . . , dm(x)) ∈ Rm.
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Block permutations with dynamic intervals. Let the original sequence be partitioned into contiguous blocks
I1, . . . , Im as above, with lengths |I1|, . . . , |Im|. A block permutation π ∈ Sm rearranges these blocks, producing a
new sequence π(x). We then define new block intervals I ′1, . . . , I

′
m by preserving the original relative positions but

adjusting the boundaries according to the lengths of the permuted blocks. More precisely, we let

|I ′k| =
∣∣Iπ−1(k)

∣∣, I ′k = [a′k, b
′
k],

where the boundaries are given recursively by

a′1 = 1, b′k = a′k + |Iπ−1(k)| − 1, a′k+1 = b′k + 1.

Thus, the k-th block position in the permuted sequence has the same length as the block that was moved into that
position. The block averages under the permuted sequence are

dk
(
π(x)

)
=

1

|I ′k|
∑
t∈I′

k

D
(
π(x)

)
t
.

Two–dimensional representation. A simple type of permutation π are a swap between block i and block j. We
represent the relevant attention mass by the vector

vij(x) = (di(x), dj(x)),

and after the permutation by
vij(π(x)) = (di(π(x)), dj(π(x))).

Permutation weights. Not all block swaps are equally informative: we weight each permutation π according to the
amount of mass it moves,

α(π) = softmax
(∣∣di(x)− dj(x)

∣∣/τ),
where τ > 0 is a temperature parameter controlling how sharply the softmax focuses on high-mass swaps.

Positional and symbolic scores. We can now quantify how the head behaves with respect to block permutations
using cosine similarity5. The positional score measures how stable the block averages remain under a permutation:

sPOS(x) =
∑
π

α(π) cos sim
(
vij(π(x)), vij(x)

)
.

The symbolic score instead measures whether the block averages transform exactly as the permutation prescribes:

sSYM(x) =
∑
π

α(π) cos sim
(
vij(π(x)), vji(x)

)
.

Scores per frequency. Even though previous definitions are applicable to any logits function L, in the case of RoPE
we can leverage its frequency decomposition (as a Hadamard attention head) to have a more refined understanding of
the positional and symbolic behavior of each RoPE’s frequency as single angle attention heads.

We begin by isolating the contribution of a single attention head at a given layer, and decomposing its logits into
frequency components induced by RoPE. Consider layer ℓ and head h. The logits between query position n with token
xn and key position j with token xj are given by

Lℓh(xn, n, xj , j) =
〈
Kℓhxj , R

n−j
Θ Qℓhxn

〉
=

d/2∑
t=1

〈
Kℓh

2t,2t+1xj , R
n−j
θt

Qℓh
2t,2t+1xn

〉

=

d/2∑
t=1

Lℓh
t (xn, n, xj , j).

Here each term
Lℓh
t (xn, n, xj , j) =

〈
Kℓh

2t,2t+1xj , R
n−j
θt

Qℓh
2t,2t+1xn

〉
corresponds to the logit contribution from frequency θt where the metrics sPOS(x) or sSYM(x) can be measured
individually.

5cos sim(a, b) = ⟨a,b⟩
∥a∥ ∥b∥ .
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A.4 Template Prompts for Real-world Models on Binding Task

In our template prompts, we consider the span-block format defined as follows:

span_block = "\n".join([f"{name} likes the color {color}"
for name, color in sequence])

See bellow the template prompts for each model.

gemma-2-it

<bos><start_of_turn>user
You are a helpful assistant that can answer questions about entities and their associated
attribute.
---
Context:
{{span_block}}
---
Question: What color does {{entity[j]}} like the most?<end_of_turn>
<start_of_turn>model
Answer: {{entity[j]} likes the color

llama-3.2-it

<|begin_of_text|><|start_header_id|>system<|end_header_id|>
You are a helpful assistant that can answer questions about entities and their associated
attribute.<|eot_id|>
<|start_header_id|>user<|eot_id|>
Context:
{{span_block}}
---
Question: What color does {{entity[j]}} like the most?<|eot_id|>
<|start_header_id|>assistant<|eot_id|>
Answer: {{entity[j]} likes the color

qwen2-it

<|im_start|>system
You are a helpful assistant that can answer questions about entities and their associated
attribute.<|im_end|>
<|im_start|>user
Context:
{{span_block}}
---
Question: What color does {{entity[j]}} like the most?<|im_end|>
<|im_start|>assistant
Answer: {{entity[j]} likes the color

A.5 Gemma-2-2B-Instruct on the Binding Task

For the google/gemma-2-2b-it model, we compute global positional and symbolic scores for each attention head,
and for each head we compute the scores of the projected heads for every frequency. The same analysis is also performed
for other models, with results deferred to the next sections. Our evaluation is grounded in the binding task, which tests
whether the model can correctly associate entities with their attributes [Feng and Steinhardt, 2023]. Specifically, we
construct inputs consisting of n = 256 entity–attribute pairs, where entities are proper names and attributes are colors
(e.g., Alice likes the color Red; Bob likes the color Blue). At the end of the sequence, a query probes the attribute of one
entity (e.g., What color does Alice like the most?). The choice of the task is made based on two reasons. First, it is a
task that can intuitively be approached by a combination positional and a symbolic mechanisms. And second, we have
complete control of the location of the correct answer the question at the end of the prompt requires the model to find.
This allows for a clearer comparison of the model behavior’s when we change this location by changing the query.

We segment each input into 256 blocks, with each block containing exactly one entity–attribute pair. Then we select 9
uniformly spaced blocks. For a given query targeting the k-th block, we generate alternative inputs by permuting the
position of i-th block with a different j-th block, for all i, j = 1...9. This procedure yields nine permutations per query,
and a total of nine queries per input.

For each attention head, we compute the positional and symbolic scores across RoPE frequencies. Recall that Gemma
employs RoPE, where frequency identifiers are mapped to angular frequencies according to θt = 10000−2·t/d, with t
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the frequency index and d = 256 the head dimension. By convention, lower frequency IDs correspond to higher angular
frequencies, and conversely, higher frequency IDs correspond to lower angular frequencies. This mapping allows us to
analyze the contribution of each frequency to the model’s binding behavior.

We first evaluate the metrics separately for each frequency. Figure 6 shows the location of selected attention heads in
the positional–symbolic plane, together with their detailed frequency profiles. Since the model uses a head dimension
of 256, this corresponds to 128 RoPE frequencies. By convention, higher frequency IDs correspond to lower angular
frequencies, while lower frequency IDs correspond to higher angular frequencies.

We then aggregate these measurements by summing logits across frequencies, yielding a global positional–symbolic
profile. The results, presented in Figure 1, 7, provide an overall view across all layers and heads of the model.
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Figure 5: Positional–symbolic profiles of all attention heads in google/gemma-2-2b-it. Each subplot corresponds
to an attention head, 26 layers, 8 heads per layer.
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Figure 6: Positional–Symbolic Plane across Frequencies. Visualization of six attention heads from the
google/gemma-2-2b-it model. (Left) Each point represents a head in the positional–symbolic plane, labeled
by its layer and head index. (Right) For the same heads, we plot their positional and symbolic scores as a function of
RoPE frequencies.
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Figure 7: Heads when the block moves (1 to 9). (Above) Heads in the positional–symbolic plane for each block
position. (Bellow) Histograms showing how positional and symbolic scores change as the relevant block moves.

B Additional illustration and proofs of section 4

B.1 Illustration of canonical tasks

See Figure 8 for an illustration of how the canonical tasks presented in Section 4 should work.
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Figure 8: Illustration of the canonical tasks.

B.2 Proof of theorem 2

First, we will prove that whenever a head H = (L, VAL, F ) acts symbolically on input x̄, the output of the model
MEMB is invariant over permutations of the input.
Lemma 1. For a fixed vocabulary Σ = {s1, s2, ..., s|Σ|} and input s∗ = (si1 , ..., sin) such that H acts symbolically on
EMB(s∗), then

MEMB(s
∗) = MEMB(π(s

∗)) ∀π ∈ Sn−1

Proof. Set EMB(s∗) = (x1, ..., xn) and fix a position k ≤ n. Now, we have that the attention weight at position k with
input s∗ is

wnk(s
∗) =

exp(L(xn, n, xk, k))∑
l≤n

exp(L(xn, n, xl, l))
=

exp(L(xn, n, xk, π(k)))∑
l≤n

exp(L(xn, n, xπ(l), π(l)))
= wnπ(k)(π(s

∗)),

because H acts symbolically on s∗. Now, if we look at the attention vector for the last position with input s∗ we get
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an(s
∗) =

∑
j≤n

wnj(s
∗)VAL(xj)∑

j≤n wnj(s∗)
=

∑
j≤n

wnπ(j)(s
∗)VAL(xπ(j))∑

j≤n wnπ(j)(s∗)
(2)

=

∑
j≤n

wnπ(j)(π(s
∗))VAL(xπ(j))∑

j≤n wnπ(j)(π(s∗))
(3)

=an(π(s
∗)). (4)

Which implies that MEMB has the same output for s∗ and π(s∗).

Consider an arbitrary vocabulary Σ and s ∈ Σ∗ such that x̄ = EMB(s) = (x1, x2, ..., xn) is the input where H
acts symbolically. Since x̄ is not constant, there exists a permutation π ∈ Sn−1 such that fPOS(π(s)) ̸= fPOS(s)
(we just change what is in the position j being asked). Then, from Lemma 1 it follows that MEMB(s) ̸= fPOS(s) or
MEMB(π(s)) ̸= fPOS(π(s)).

B.3 Proof of theorem 3

The goal is to design an attention head HPOS such that the model MONEHOT using HPOS returns the symbol σj at position
j with input sPOS, i.e. it performs an indexing operation.

We fix a sequence length n > 0, and define the desired inner product condition:

xiK
⊤Rn−i

θ Qxn(j) = v⊤Rn−i
θ qn(j) = cos (θ(j − i))

for i = 0, ..., n.

In order to achieve this, first we fix a vector v = (1/2, 1/2)⊤ and the rotation angle θ = π/n (so maximum is reached
just for i = j). We define the query vector as:

qn(j) = Rj−n
θ v

Therefore, we get a query matrix QPOS such that:

QPOSej = qn(j)

where ej is the one-hot encoding of the symbol j. For our solution, we use the ONEHOT embedding function. On the
other hand, we define a constant key matrix KPOS such that for any position i, the key embedding of the symbol at that
position is:

KPOSONEHOT(σi) = v.

With these choices, the result is a one-layer transformer MONEHOT with attention head HPOS = (KPOS, QPOS, Id, π1)
that always maximizes its attention at the right position. Therefore, MONEHOT perfectly copies the symbol at the position
asked by an input sPOS, at least when sPOS has length n. Now, by Theorem 3 we know that HPOS can not be a symbolic
head for any input. We formally state its positional nature in the following lemma.
Lemma 2. For every input sPOS, HPOS is a positional head on ONEHOT(sPOS).

Proof. We just apply the definition of a positional head on y, z ∈ {x1, . . . , xn−1}, i ∈ [n− 1] then

L(xn(j), n, y, i) = cos (θ(j − i)) = L(xn(j), n, z, i).

Lemma 3. For the head HPOS and any sPOS with |ONEHOT(sPOS)| = n then

MONEHOT(sPOS) = fPOS(sPOS).

Proof. First, we see that logits are maximized at position j.

arg max
i∈[n−1]

L(xn(j), n, xi, i) = arg max
i∈[n−1]

cos(θ(j − i)) = j.

.
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Therefore, the biggest attention weight is wj
n, i.e

max{wi
n}ni=1 = wj

n.

Now, given that the value function VAL = id, then we have that

an =

n∑
i=1

wi
nxi,

which implies that argmax
σi∈Σ

SOFTMAX(an)i = ONEHOT−1(xj) = σj concluding the proof.

B.4 Proof of theorem 4

Suppose there exist an input sSYM = (s1, ..., sn), an attention head H = (Q,K,U, id, π1) that acts positionally on
x̄ = ONEHOT(sSYM(H)) and MONEHOT = fSYM. Now, by defining the function

D(xn, n, xj , j) =
exp(L(xn, n, xj , j))∑

k≤n

exp(L(xn, n, xk, k))
,

we can express the attention vector an(sSYM(H)) as

an(sSYM(H)) =
∑
j≤n

D(xn, n, xj , j)xj .

We also have that

MONEHOT(sSYM) = argmax
σi∈Σ

SOFTMAX(π1(an, xn))i (5)

=ONEHOT−1(argmax
xj

D(xn, n, xj , j)) (6)

=si∗ (7)

by exploiting the fact that {xj}nj=1 is an orthonormal basis and π1(an, xn) = an. In this case, i∗ is the position of the
input sSYM(H) where the answer appears. Since MONEHOT solves fSYM, there is a unique vector xi∗ that maximizes the
output distribution. Therefore, there exists a position k < n with k ̸= i∗ such that

D(xn, n, xk, k) < D(xn, n, xi∗ , i
∗).

Now, applying the positional behavior of H , we get that

D(xn, n, xi∗ , i
∗) = D(xn, n, xk, i

∗) and D(xn, n, xk, k) = D(xn, n, xi∗ , k).

Finally, consider a permutation πi∗→k ∈ Sn−1 that just interchange si∗ with sk. We have that

an(πi∗→k(sSYM(H)) =
∑
j ̸=i∗

D(xn, n, xj , j)xj +D(xn, n, xk, i
∗)xk,

which implies that

MONEHOT(πi∗→k(sSYM)) = argmax
σi∈Σ

SOFTMAX(π1(an, xn))i (8)

=ONEHOT−1(argmax
xj

D(xn, n, xj , j)) (9)

=sk (10)

And therefore,
MONEHOT(sSYM(H)) ̸= MONEHOT(πi∗→k(sSYM(H))),

but fSYM(sSYM(H)) = fSYM(πi∗→k(sSYM(H))) which is a contradiction.
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B.5 Proof of theorem 5

Fix a sequence length n > 0 and a vocabulary Σ = {σ1#, σ1#1, σ1#2, ..., σm#k} with m, k > 0. We want a matrix
KSYM such that for each symbol σi there exist a vector

vσi = KSYMONEHOT(σi#α)

for any α ∈ {1, ..., k} and KSYMONEHOT(σi#) = 0 for any σi.

On the other hand, we want a matrix QSYM such that

QSYMxn(σj#) = qn(σj#) = R l−n
θ vσj

.

In essence, we want that vectors vσi
∈ R2 codify all symbols s ∈ Σ such that σi appears in s. In general, this can be

done for θ < 2π
m in order to avoid overlapping in the vectors vσi

after the rotation with Rθ. For example, we can fix the
vector vσ1

= (1, 0)⊤ and an angle β = 2π
m . Then, for i ∈ [2, ...,m] we have that vσi

= Ri
βvσ1

.

Having such matrices for a fixed θ, we get a logits function defined as

L(ONEHOT(σj#), n, ONEHOT(σi#α), t) = xt
TK⊤

SYMR
n−t
θ QSYMxn (11)

= v⊤σi
Rn−t

θ qn(σj#) (12)

= v⊤σi
R l−t

θ vσj (13)

for t = 0, . . . , n− 1.

We refer to the attention head using this logits function as Hθ
SYM. Notice that when θ = 0, Hθ

SYM uses the NoPE (No
Positional Encoding) since the operator Rθ becomes the identity. In consequence, H0

SYM is purely symbolic for any
input.

In the case that θ > 0, Rθ introduces a rotation that perturbs the query vectors. To maintain symmetry of the inner
product structure, the vectors must be centered in the middle of the context. This requirement naturally leads to the
choice l = n−1

2 . However, in this case the Hθ
SYM does not act symbolically given that logits depends on the positions.

To formalize our construction for θ = 0, we prove the following lemma.
Lemma 4. For the head H0

SYM and any sSYM with |ONEHOT(sSYM)| = n then

MONEHOT(sSYM) = fSYM(sSYM)

Proof. Using the fact that

arg max
i∈[n−1]

L(xn(σj), n, xi, i) = arg max
i∈[n−1]

v⊤σi
vσj

= j.

and the argument follows from the same idea of the proof of Lemma 3.

Finally, by Theorem 4 we know that H0
SYM can not be a positional head. Now we proceed to show that it is indeed a

symbolic one.
Lemma 5. For every input sSYM , the head H0

SYM is symbolic on ONEHOT(sSYM).

Proof. For i, j ∈ [m], y = ONEHOT(σi#α) and , k1, k2 ∈ [n− 1]

L(xn(σj#), n, y, k1) = v⊤σi
vσj

= L(xn(σj#), n, y, k2).

B.6 A counter example with MLP layer

Counter Example. Fix the sequence length to be n = 3 and consider a vocabulary consisting of symbols {a, b} and
integers {0, 1}. We take as input a sequence sSYM with associated embedded soft-vectors x,

sSYM = (σ1#i1, σ2#i2, σ#), x = ONEHOT(sSYM) = (y1, y2, x).
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Attention Head Construction. Consider a head H with logit function L satisfying:

L(x, 3, y1, 1) = cos(2π) = 1, L(x, 3, y2, 2) = cos(π) = −1, L(x, 3, x, 3) = 0.

This can be achieved by choosing RoPE with θ = π, and matrices Q,K such that

Qx = Kyj = (1, 0, 0, 0, 0, 0) (for positions j = 1, 2), Kx = (0, 0, 0, 0, 0, 0) (at the last token).

With VAL = id, the attention vector at the last position is

a3 =
(
γ(a#1, x), γ(a#2, x), γ(b#1, x), γ(b#2, x), γ(a#, x), γ(b#, x)

)
,

where γ is defined as follows

γ(σj#, x) = λ3 · I(σ = σj), γ(σj#ij , x) =


e+e−1

Σ if σj#ij occurs twice,

0 if σj#ij never occurs,

λj if σj#ij occurs exactly once.

where λ1 = e
Σ , λ2 = e−1

Σ and λ3 = 1
Σ , with Σ = e+ e−1 + 1.

Final Output Function. Define the function F (a3) ∈ R6 by

F (a3)σj#ij = AND(EQ(γ(σj#, x), λ3), OR(EQ(γ(σj#ij , x), λ1), EQ(γ(σj#ij , x), λ2)))

and F (a3)σj# = 0. The logical operations AND, OR and EQ can be implemented by an MLP with ReLU activations
and fixed precision with sufficient depth (see Lemma A.1 in Yao et al. [2021]).

B.7 Proof of corollary 1

By Lemma 1 we know that if H acts symbolically on an input sMIX(H) = (σ0#i0, σ1#i1, . . . , σn−1#in−1, σj#),
then for every permutation of sMIX(H) the answer of the one-head decoder-only transformer model MONEHOT using H
is invariant. However, the answer of fMIX must change if we permute both appearances of σj in sMIX(H) which means
MONEHOT can not solve fMIX.

On the other hand, by using the same argument as the proof B.4, we know that if H acts positionally on sMIX, then we
can force its model’s output to change for permutations of sMIX where fMIX is invariant.

B.8 Proof of Theorem 6

In this case we mix the ideas we used to define heads HPOS and Hθ
SYM, by using a RoPE with 2 frequencies. First, fix the

vocabulary Σ = {σ1#, σ1#1, σ1#2, ..., σm#k} with m, k > 0. In the same way as we did for Hθ
SYM we can define

vectors vσi ∈ R2 that codify the presence of σi in a symbol of Σ. On the other hand, as we did for HPOS, we set a
constant vector v = (1/2, 1/2)⊤. Now, we define a matrix K ∈ R4×|Σ| such that

KMIXONEHOT(σ1#α) = [vσi
, v],

for any α ∈ {1, ..., k}, while ONEHOT(σi#)KMIX = 0 for any i ∈ {1, ...,m}.

For the query matrix QMIX, we define a query matrix such that

QMIXONEHOT(σj#) = qn(σj#) = [R l−n
θ vσj , v].

Finally, for angles θ1, θ2, we get a logits function

ONEHOT(σi#α)K⊤
MIXR

n−i
Θ QMIXONEHOT(σj#) = v⊤σi

Rn−i
θ1

qn(σj) + v⊤Rn−i
θ2

v (14)

= v⊤σi
R l−i

θ1
vσj + cos (θ2(n− i)) (15)

If we set θ1 = 0 (NoPE), then our logits function becomes

L(ONEHOT(σj#), n, ONEHOT(σi#α), k) = v⊤σi
vσj

+ cos (θ2(n− k)) ,

with 0 < θ2n < 2π/(n|Σ|) properly chosen to define our solution head H0,θ2
MIX .
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Lemma 6. For H0,θ2
MIX and any sMIX with |ONEHOT(sMIX)| = n then MONEHOT(sMIX) = fMIX(sMIX).

Proof. Notice that:
θ2 < 2π/(n|Σ|) ⇒ cos(2π/|Σ|) < cos (θ2n)

and v⊤σi
vσj

< cos(2π/|Σ|) for σi ̸= σj . Then

v⊤σi
vσj

+ cos (θ2(n− k)) ≤ cos(2π/|Σ|) + cos (θ2(n− k))

< cos (θ2n) + cos (θ2(n− k))

≤ cos (θ2n) + 1

≤ cos (θ2(n− jp)) + 1

= cos (θ2(n− jp)) + v⊤σjp
vσj

for all k ∈ [n− 1] \ {j1, j2} with p = 1, 2, where vσj1
= vσj2

= vσj
.

Using this and j1 < j2, we can conclude:

arg max
i∈[n−1]

L(xn(j), n, xi, i) = arg max
i∈[n−1]

(
v⊤σi

vσj
+ cos (θ2(n− i))

)
= arg max

i∈{j1,j2}

(
v⊤σi

vσj
+ cos (θ2(n− i))

)
= arg max

i∈{j1,j2}
cos (θ2(n− i))

= j2.

And the result follows from the fact that the most attended symbol of the input is the output for this architecture as seen
in the proof of Lemma 3.
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C Appendix for section 5

C.1 Specialized heads for index, information retrieval and partial induction tasks

To further disentangle the role of positional and symbolic information, we train from scratch a family of minimal
transformer models, each consisting of a single layer, a single attention head, and a single RoPE frequency. Each model
is trained independently with a different frequency choice, and performance is evaluated on two tasks: an index task
and an information retrieval task (see Section 4 for precise definitions).

All experiments are carried out on sequences of length n = 32+ 1, where 32 tokens form the context and the additional
token is the query. Both tasks are defined over mixed symbol–integer sequences. In the information retrieval task, the
model must retrieve the integer associated with the query symbol, while in the index task, the model must instead return
the symbol associated with the query integer (which directly encodes a position). We fix a vocabulary of 16 symbols
and 32 possible integers.

We sweep over a range of base angles for the RoPE:

[0.0, 0.01, 0.1, 0.25, 0.4, 0.5, 0.8, 1.0, 1.5, 2.0].

Here, 0.0 corresponds to a NoPE model (no rotary position encoding), while 2.0 corresponds to a RoPE configuration
that completes one full angular lap over the n = 33 tokens of the sequence. More generally, the effective frequency is
given by

θ =
π

n
· base_angle,

and the number of laps is defined as nθ/2π.

Training is performed for 100 epochs with batch size 64, using 40,960 training samples and 20,480 validation samples.
Figure 2 reports the resulting accuracies as a function of frequency. The results show a clear tension: index task and
information retrieval achieve their best performance at different frequency ranges, indicating that the model’s inductive
bias over RoPE frequencies favors one type of task at the expense of the other.

C.2 Proof of Theorem 7: U-shape and inverted U-shape.

U-shape accuracy. Let us start with the statement wmax is U -shaped for HPOS. As established in the proof of Theorem
3, the logits of HPOS are of the form:

L(xn, n, xi, i) = cos(θ(j − i)),

where θ < 2π
n and j is the location of the answer. Thus, we obtain the following expression for wmax(j):

wmax(j) =
exp(1)

exp(cos(θ(j − 1)) + . . .+ exp(cos(θ(j − n)))
.

What happens when we go from wmax(j) to wmax(j + 1)? We add exp(cos(θj)) and delete exp(cos(θ(j − n))) from
the denumerator. That is, if cos(θj) > cos(θ(j − n)), the value of wmax(j) decreases, and otherwise, it stays the same
or increases.

Since θ < 2π
n , we have cos(θj) > cos(θ(j − n)) if and only if |j| < |j − n|. Hence, starting from j = 1 when |j| is

much smaller than |j − n|, the function wmax is decreasing, having a local maximum at j = 1. Wheh j is about n/2,
the absolute values |j| and |j − n| become equal and then the first one becomes larger, and afterwards the function
wmax starts increasing, reaching another local maximum at j = n− 1 in the form of a U -shape, as required.

Inverted U-shape accuracy. We consider a simple RoPE head with one angle, equal to π/n, as the one used for the
empirical results depicted in Figure 3 where the inverted U-shape is observed in the retrieving (symbolic) task. We
will rigorously prove this is the case in a simplified scenario. The simplified task will be the following: we have two
possible tokens τ0, τ1 and we consider prompts x1 . . . xn consisting of n copies of τ0, except at two positions where it
has τ1. These two positions are the query (j = n) and some ℓ ≤ m = n− 1. The task for the attention head is to detect
the requested token in position ℓ, which means that we expect a distribution of attention wights αj (j = 1, ...,m) with
small values except for a peak at j = ℓ. This must hold for every prompt of this form.

As we have empirically demonstrated, RoPE cannot be expected to behave symbolically for this choice of angle (it
is too big) so we accept a weak solution of the symbolic task: the logit sequence λ1, ..., λm is negative, except for a
positive value when we reach the desired token τ1. We also want that the logits are bounded away from 0 (positive or
negative) as much as possible. Since the query position is fixed, if q = Qxn ∈ R2 is the query vector, then we can write
the logit function as

L(xn, n, x, j) = L(x, j) = xKU jq
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(U is the RoPE matrix for angle π/n). For any embedding vector x ∈ Rd let x′ = xK ∈ R2. Let zi be the embedding
vector of τi for i = 0, 1. We make the simplifying assumption that q, z′0 and z′1 have norm 1 —the discussion can be
adapted to a more general case, but we choose to keep the computations simple while still exhibiting the main features
of the inverted U-shape phenomenon.

Let γ(x) be the angle between q and the vector x′ = xK for x ∈ Rd. Then the formula for the RoPE logit and the
assumption ∥q∥ = 1 gives

L(x, j) = ∥x′∥ cos(πj/n− γ(x)).

In particular, our assumption that this logit function gives an approximate (in the sense of sign) solution to the symbolic
task described above, with logits bounded away from 0 as much as possible, gives

γ(z0) = −π/2, γ(z1) = π/2

so that

L(zi, j) =

{
cos(πj/n+ π/2) if i = 0

cos(πj/n− π/2) if i = 1

(here we used the simplifying assumption ∥z′i∥ = 1). We note the symmetry

L(z1, j) = −L(z0, j).

Let
νi(j) = exp(L(zi, j))

and note that ν0(ℓ)ν1(ℓ) = 1. Define

S =

n−1∑
j=1

ν0(j).

Recall that the position of the sought token is ℓ. Then the attention weight at j = ℓ is maximal (due to the sign of the
logits –this is the only positive logit for the given prompt) and it is

wmax(ℓ) =
ν1(ℓ)

S + ν1(ℓ)− ν0(ℓ)
.

This is the only peak of the attention weights for the prompt with sought token at position ℓ.

Finally, we can give a rigorous proof of the inverted U-shape phenomenon in this setting.
Theorem 8 (Inverted U-shape). Assume n ≥ 5. As a function of ℓ, the sequence wmax(ℓ) is increasing for 0 < ℓ < n/2
and decreasing for n/2 < ℓ < n.

Proof. We can use the same formula defining wmax(ℓ) on a real variable t instead of the discrete variable ℓ, and then
restrict back to integers ℓ.

Let f(t) = 1/wmax(t). It suffices to prove that f ′(t) is negative for 0 < t < n/2 and positive for n/2 < t < n.

From the equation ν0(ℓ)ν1(ℓ) = 1 we have

f(t) = 1 + Sν0(t)− ν0(t)
2.

Then
f ′(t) = Sν′0(t)− 2ν′0(t)ν0(t) = ν′0(t) (S − 2ν0(t)) .

If n ≥ 5 and t = ℓ is an integer, the parenthesis is strictly positive because we are substracting 2 different sumands
from S (here we use n is odd). On the other hand, we explicitly compute ν′0(t):

ν′0(t) = −π

n
ν0(t) sin(πt/n+ π/2).

As ν0(t) > 0 always, the sign of the previous expression is negative for πt/n ∈ (0, π/2) and positive for πt/n ∈
(π/2, π). The result follows.

24



D Additional results for realistic models

D.1 Llama-3.2-1B-Instruct
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(a) Positional–Symbolic Plane across Frequencies. Visualization of six attention heads from the
meta-llama/Llama-3.2-1B-Instruct model. (Left) Each point represents a head in the positional–symbolic plane, la-
beled by its layer and head index. (Right) For the same heads, we plot their positional and symbolic scores as a function of RoPE
frequencies.
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(b) All heads, fixed first block. (Left) Each head in the positional–symbolic plane. (Middle) Histogram showing predominance of
symbolic over positional behavior. (Right) Heatmaps of positional and symbolic scores for each head across layers.

Figure 9: Positional–Symbolic Plane across Heads. 16 Layers, 32 Heads per layer. Since the model uses a head
dimension of 64, this corresponds to 32 RoPE frequencies.
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(c) Heads when the block moves (1 to 9). (Above) Heads in the positional–symbolic plane for each block position. (Below)
Histograms showing how positional and symbolic scores change as the relevant block moves.

Figure 9 (continued).
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D.1.1 Llama-3.2-3B-Instruct
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(a) Positional–Symbolic Plane across Frequencies. Visualization of six attention heads from the
meta-llama/Llama-3.2-3B-Instruct model. (Left) Each point represents a head in the positional–symbolic plane, la-
beled by its layer and head index. (Right) For the same heads, we plot their positional and symbolic scores as a function of RoPE
frequencies.
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(b) All heads, fixed first block. (Left) Each head in the positional–symbolic plane. (Middle) Histogram showing predominance of
symbolic over positional behavior. (Right) Heatmaps of positional and symbolic scores for each head across layers.

Figure 10: Positional–Symbolic Plane across Heads. 28 Layers, 24 Heads per layer. Since the model uses a head
dimension of 128, this corresponds to 64 RoPE frequencies.
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(c) Heads when the block moves (1 to 9). (Above) Heads in the positional–symbolic plane for each block position. (Below)
Histograms showing how positional and symbolic scores change as the relevant block moves.

Figure 10 (continued).
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D.2 Qwen2-1.5B-Instruct
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(a) Positional–Symbolic Plane across Frequencies. Visualization of six attention heads from the qwen/Qwen2-1.5B-Instruct
model. (Left) Each point represents a head in the positional–symbolic plane, labeled by its layer and head index. (Right) For the
same heads, we plot their positional and symbolic scores as a function of RoPE frequencies.
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(b) All heads, fixed first block. (Left) Each head in the positional–symbolic plane. (Middle) Histogram showing predominance of
symbolic over positional behavior. (Right) Heatmaps of positional and symbolic scores for each head across layers.

Figure 11: Positional–Symbolic Plane across Heads. 28 Layers, 12 Heads per layer. Since the model uses a head
dimension of 128, this corresponds to 64 RoPE frequencies.
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(c) Heads when the block moves (1 to 9). (Above) Heads in the positional–symbolic plane for each block position. (Below)
Histograms showing how positional and symbolic scores change as the relevant block moves.

Figure 11 (continued).
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D.3 Qwen2-0.5B-Instruct
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(a) Positional–Symbolic Plane across Frequencies. Visualization of six attention heads from the qwen/Qwen2-0.5B-Instruct
model. (Left) Each point represents a head in the positional–symbolic plane, labeled by its layer and head index. (Right) For the
same heads, we plot their positional and symbolic scores as a function of RoPE frequencies.
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(b) All heads, fixed first block. (Left) Each head in the positional–symbolic plane. (Middle) Histogram showing predominance of
symbolic over positional behavior. (Right) Heatmaps of positional and symbolic scores for each head across layers.

Figure 12: Positional–Symbolic Plane across Heads. 24 Layers, 14 Heads per layer. Since the model uses a head
dimension of 64, this corresponds to 32 RoPE frequencies.
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(c) Heads when the block moves (1 to 9). (Above) Heads in the positional–symbolic plane for each block position. (Below)
Histograms showing how positional and symbolic scores change as the relevant block moves.

Figure 12 (continued).
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